自80年代初德國科學家H.V.Gleiter成功地采用惰性氣體凝聚原位加壓法制得純物質(zhì)的塊狀納米材料后[1],納米材料的研究及其制備技術(shù)在近年來引起了世界各國的普遍重視。由于納料材料具有獨特的納米晶粒及高濃度晶界特征以及由此而產(chǎn)生的小尺寸量子效應和晶界效應,使其表現(xiàn)出一系列與普通多晶體和非晶態(tài)固體有本質(zhì)差別的力學、磁、光、電、聲等性能[2],使得對納米材料的制備、結(jié)構(gòu)、性能及其應用研究成為90年代材料科學研究的熱點。為使這種新型材料既有利于理論研究,又能在實際中拓寬其使用范圍,探索高質(zhì)量的三維大尺寸納米晶體樣品的制備技術(shù)已成為納米材料研究的關(guān)鍵之一。本文綜述國內(nèi)外現(xiàn)有塊狀金屬納米材料的制備技術(shù)進展,并提出今后可能成為塊狀金屬納米材料制備的潛在技術(shù)。
1現(xiàn)有塊狀金屬納米材料的制備技術(shù)
1.1惰性氣體凝聚原位加壓成形法
該法首先由H.V.Gleiter教授提出[1],其裝置主要由蒸發(fā)源、液氮冷卻的納米微粉收集系統(tǒng)、刮落輸運系統(tǒng)及原位加壓成形(燒結(jié))系統(tǒng)組成。其制備過程是:在高真空反應室中惰性氣體保護下使金屬受熱升華并在液氮冷鏡壁上聚集、凝結(jié)為納米尺寸的超微粒子,刮板將收集器上的納米微粒刮落進入漏斗并導入模具,在10-6Pa高真空下,加壓系統(tǒng)以1~5GPa的壓力使納米粉原位加壓(燒結(jié))成塊。采用該法已成功地制得Pd、Cu、Fe、Ag、Mg、Sb、Ni3Al、NiAl、TiAl、Fe5Si95等合金的塊狀納米材料[3]。近年來,在該裝置基礎(chǔ)之上,通過改進使金屬升華的熱源及方式(如采用感應加熱、等離子體法、電子束加熱法、激光熱解法、磁濺射等)以及改良其它裝備,可以獲得克級到幾十克級的納米晶體樣品。納米超飽和合金、納米復合材料等也正在利用此法研究之中。目前該法正向多組分、計量控制、多副模具、超高壓力方向發(fā)展。
該法的特點是適用范圍廣,微粉表面潔凈,有助于納米材料的理論研究。但工藝設備復雜,產(chǎn)量極低,很難滿足性能研究及應用的要求,特別是用這種方法制備的納米晶體樣品存在大量的微孔隙,致密樣品密度僅能達金屬體積密度的75%~90%,這種微孔隙對納米材料的結(jié)構(gòu)性能研究及某些性能的提高十分不利。近年來,盡管發(fā)展了一些新的納米粉制備方法如電化學沉積[4]、電火花侵蝕(spark erosion)[5]等方法,但與這些方法相銜接的納米粉的分散、表面處理及成型方法尚未得到發(fā)展。
1.2機械合金研磨(MA)結(jié)合加壓成塊法
MA法是美國INCO公司于60年代末發(fā)展起來的技術(shù)。它是一種用來制備具有可控微結(jié)構(gòu)的金屬基或陶瓷基復合粉末的高能球磨技術(shù):在干燥的球型裝料機內(nèi),在高真空Ar2氣保護下,通過機械研磨過程中高速運行的硬質(zhì)鋼球與研磨體之間相互碰撞,對粉末粒子反復進行熔結(jié)、斷裂、再熔結(jié)的過程使晶粒不斷細化,達到納米尺寸[6]。然后、納米粉再采用熱擠壓、熱等靜壓等技術(shù)[7]加壓制得塊狀納米材料。研究表明,非晶、準晶、納米晶、超導材料、稀土永磁合金、超塑性合金、金屬間化合物、輕金屬高比強合金均可通過這一方法合成。
該法合金基體成分不受限制、成本低、產(chǎn)量大、工藝簡單,特別是在難熔金屬的合金化、非平衡相的生成及開發(fā)特殊使用合金等方面顯示出較強的活力,該法在國外已進入實用化階段。如美國INCO公司使用的球磨機直徑為2m,長3m,每次可處理約1000kg粉體,這樣的球磨機1993年在美國安裝有七座,英國安裝有二座,大多用來加工薄板、厚板、棒材、管材及其它型材。近年來,該法在我國也獲得了廣泛的重視。其存在的問題是研磨過程中易產(chǎn)生雜質(zhì)、污染、氧化及應力,很難得到潔凈的納米晶體界面,對一些基礎(chǔ)性的研究工作不利。
1.3非晶晶化法
該法是近年來發(fā)展極為迅速的一種新工藝,它是通過控制非晶態(tài)固體的晶化動力學過程使晶化的產(chǎn)物為納米尺寸的晶粒。它通常由非晶態(tài)固體的獲得和晶化兩個過程組成。非晶態(tài)固體可通過熔體激冷、高速直流濺射、等離子流霧化、固態(tài)反應法等技術(shù)制備,最常用的是單輥或雙輥旋淬法。由于以上方法只能獲得非晶粉末、絲及條帶等低維材料,因而還需采用熱模壓實、熱擠壓或高溫高壓燒結(jié)等方法合成塊狀樣品[8]。晶化通常采用等溫退火方法,近年來還發(fā)展了分級退火[9]、脈沖退火[10]、激波誘導[11]等方法。目前,利用該法已制備出Ni、Fe、Co、Pd基等多種合金系列的納米晶體,也可制備出金屬間化合物和單質(zhì)半導體納米晶體,并已發(fā)展到實用階段。此法在納米軟磁材料的制備方面應用最為廣泛。值得指出的是,國外近年來十分重視塊體非晶的制備研究工作,繼W.Klement、H.S.Chen、H.W.Kui等 |